Sunday, 24 February 2013

cALculus (fUnctioN)



Relation and function

Example 1
A function g  is defined by g(x)= 2x²-1 Find
(a)    g(3)
              g(3) = 2(3)²-1
          
               2(9)-1= 17#

       
(b)    g(0.5)
            g(0.5)= 2(0.5)²-1
                    =2(0.25)-1
                    =0.5-1
                    =-0.5    


(c)     g(-2)
            g(-2)=2(-2)²-1
                  =2(4)-1
                  =8-1
                  =7#


Example 2:
A function g is defined by g(x)=x/3+1. Find
(a)    g(3)
          g(3)= 3/3 + 1
              = 1+ 1
              = 2#

       

Example 4:
If f(x)=x²+3x+2 x is real, express each of the following in terms of :
(a)    f(2x)
         f(2x) = (2x)² + 3(2x)+ 2
                = 4x²+6x+2#     

(b)    f(2x+1)
          f(2x+1)= (2x+1)(2x+1) + 3(2x+1)+2
                   = 4x²+2x+2x+1+6x+3+2
                    = 4x²+10x +6
                    = 2x²+5x+3#

Composite function
EXAMPLE 1
Given that f(x)=3x + 1 and g(x)= x/2; Find the value of composite function of gf(x), ff(x) and fg(2)
SOLUTION
Study the given basic function —-> since both are basic functions, then this require solution under TYPE 1
gf(x)     =          g(3x + 1) by virtue of replacing 3x + 1 into f(x)
            =          (3x + 1)/2 #
ff(x) is sometimes written as f²(x)
            =          f(3x + 1)
            =          3(3x + 1) + 1
            =          9x + 4 #
Before we solve the composite function of fg(2), first we need to solve g(2) as a function
g(2)      =          2/2
            =          1
Replace the newly found value of g(2)=1 into fg(2) and that will give a new function of f(1)
fg(2)    =          f(1)    =          3(1) + 1
                                =          4 #

EXAMPLE 2
Given that the function f(x) = x + 4 and composite function of fg(x) = 5 – 3x, then find the value of function g(3)
SOLUTION
Study the given basic function —-> since only 1 basic function is given and the other unknown basic function mentioned 1st in the given composite function, then this require solution under TYPE 2
To find the value of g(3), we must first find the function of g(x)
fg(x)   =          g(x) + 4 –> from basic function of f(x)
fg(x)   =          5 – 3x —-> from the given composite function
g(x) + 4          =          5 – 3x
g(x)                =          5 – 3x – 4
                      =          1 – 3x #
JUSTIFY YOUR ANSWER
fg(x)   =          f(1 – 3x)         =     (1 – 3x) + 4
                                          =     5 – 3x
From the findings above where  g(x) = 1 – 3x
Therefore              g(3)         =    1 – 3(3)
                                          =      - 8 #
EXAMPLE 3
Given that the function f(x) = 2x and composite function of gf(x) = 3/x, then find the value of function g(3)
SOLUTION
Study the given basic function —-> since only 1 basic function is given and the other unknown basic function is mentioned 2nd in the given composite function, then this require solution under TYPE 3
To find the function of g(x), we must first redo the f(x) in order to find the value of x. This need to be done as gf(x) = 3/x indicates the value of x in the function g(x) has been utilized in the composite function.
Let f(x)           = y;       now y = 2x
                                        x = y/2
Now we can replace the value of x in the composite function of gf(x) that is now known as g(y)
gf(x)   =          g(y)    =          3/y/2
                               =          3 x 2/y
                               =          6/y
Therefore        g(x)     =          6/x #
JUSTIFY YOUR ANSWER
gf(x)   =          g(2x)  =          6/2x
                              =          3/x
From the findings above where g(x) = 6/x
Therefore g(3)        = 6/3
                            = 2 #